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Abstract

Pattern recognition techniques are effective tools for reducing the information contained in large spectral data sets to a much

smaller number of significant features which can then be used to make interpretations about the chemical or biochemical system

under study. Often the effectiveness of such approaches is impeded by experimental and instrument induced variations in the posi-

tion, phase, and line width of the spectral peaks. Although characterizing the cause and magnitude of these fluctuations could be

important in its own right (pH-induced NMR chemical shift changes, for example) in general they obscure the process of pattern

discovery. One major area of application is the use of large databases of 1H NMR spectra of biofluids such as urine for investigating

perturbations in metabolic profiles caused by drugs or disease, a process now termed metabonomics. Frequency shifts of individual

peaks are the dominant source of such unwanted variations in this type of data. In this paper, an automatic procedure for aligning

the individual peaks in the data set is described and evaluated. The proposed method will be vital for the efficient and automatic

analysis of large metabonomic data sets and should also be applicable to other types of data.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Given the vast amount and complexity of biochemi-

cal and spectroscopic data that can be obtained from

metabonomics studies [1,2], it is necessary to invoke

computer-based pattern recognition (PR) methods to

ensure optimum retrieval of information. These tech-

niques are effective tools for reducing the complexity
of information contained in multiple data sets, such as

from nuclear magnetic resonance (NMR) spectra, to a

smaller number of features, which can be used to iden-
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tify meaningful biochemical effects [3]. These spectral

features can then be directly related to biological end-

points, such as drug toxicity or disease diagnosis [4,5].

Before such PR analyses can be carried out, effects of

unwanted experimental variations need to be removed

from the data. Principal component analysis (PCA)

has proven to be an essential step for such preprocessing

and general exploration of these complex data sets. In
some cases PCA is sufficient to supply the sought infor-

mation by itself [6]. PCA is a well-known statistical tech-

nique for the analysis of large, multivariate data sets,

which extracts the basic features (patterns, factors) from

the data [7]. The experimental and instrument-induced

variations consist of fluctuations in the peak position,
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phase, and line width [8]. Although characterizing these

fluctuations can be sometimes important (pH or drug

binding-induced chemical shifts, for example) in general

they obscure the process of pattern discovery, since of-

ten the biologically significant changes are related to

the changes in the amplitude of the different signals.
Thus, before applying PR techniques, the unwanted

variations in frequency, line width, and phase need to

be removed. Aggregating the spectral intensities within

fixed frequency intervals (‘‘binning’’) is a simple but

effective way to overcome the effect of peak line shape

fluctuations on the pattern discovery process. This tech-

nique has produced successful classification in numerous

studies [4,6]. It is also clear, however, that with this
method subtle changes in some peaks will be masked

by larger changes in neighboring ones. PCA-based ap-

proaches for estimating phase variations [9]; phase and

frequency [10] and for simultaneous correction of fre-

quency, line width, and phase variations [11,12] have

been proposed. The technique has to be applied to a sin-

gle resonance peak common to all spectra in the data

set, whose behavior can be assumed to be related only
to experimental/instrumental artifacts. Correction fac-

tors are determined for this reference peak and then ap-

plied to the entire spectrum.

For high-resolution 1H NMR data, however, the

peak variability is much higher and correcting the data

using a single reference peak is not sufficient. There

are variable frequency shifts in the spectra, primarily

due to pH and temperature variations. Recently, a pro-
cedure for further refinement of the data, using a genetic

algorithm has been proposed [13]. The approach aligns

the peaks in automatically selected segments in each

spectrum to the corresponding peaks in a preselected

reference spectrum. The main drawback to this ap-

proach is the use of the reference spectrum because,

for example, in many metabonomic studies the spectra

from perturbed systems can show complete loss of some
peaks, or appearance of new peaks.

In this paper, a completely different approach for

simultaneous alignment of the individual peaks in the

entire data set is presented. The technique is based on

detecting the peak-regions, where shifts occur and align-

ing the peaks in these spectral regions by the highest fre-

quency point. The detection process consists of sliding

first derivatives of a variety of simulated peak-shapes
along the second PC of the spectral data set and calcu-

lating the correlation of these shapes with the corre-

sponding frequency points of the underlying PC. High

correlations (typically >0.80) at given points are indica-

tive of the presence of peak shifts and at these positions,

the corresponding peak-regions are selected for align-

ment. By adjusting the local frequency shifts in these ser-

ies of spectral regions, the second and higher order PCs
then become mainly related to the desired amplitude

changes, providing data sets amenable to PR analysis.
2. Theory and methods

PCA has been used extensively to analyze large mul-

tidimensional data sets [7]. It identifies fundamental

structures in a data matrix, called principal components

(PCs), through an orthogonal decomposition of the
data, using the PCs ðP

*

1;P
*

2; . . .Þ as a basis set. The gen-

eral theory behind the application of PCA to spectral

data is presented in detail elsewhere [14] so in this paper,

PCA is only described in relation to the explanation of

the proposed peak alignment procedure.

When applied to spectral data matrix D, containing n

spectra with m points each,the PCs are spectral shapes,

providing the representation:

D
ðn�mÞ

¼ S1
ðn�1Þ

P1

*

ð1�mÞ
þ S2

ðn�1Þ
P2

*

ð1�mÞ
þ S3

ðn�1Þ
P3

*

ð1�mÞ
þ � � �

þ Sm
ðn�1Þ

Pm

*

ð1�mÞ
: ð1Þ

Sj are the projections of the data along the PCs, called

scores. The PCs are orthonormal, i.e., each PC is

orthogonal to the rest of the PCs and the length of each
PC vector is 1. They are calculated as the eigenvectors of

the data covariance matrix and in this particular imple-

mentation the covariance matrix is estimated around the

origin, rather than the mean. The PCs are ordered by the

decreasing amount of variation in the data they explain.

For spectral data, the sources of coherent variations are

typically small relative to the large number of original

variables and a significant data-reduction can be
achieved by representing the data, using just a few of

the PCs in Eq. (1). The remaining PCs are noise related

and can largely be ignored without loss of information.

If D is a spectral data set in which the only coherent

variation is the amplitude and frequency of a single

peak-shape f
*

, then each individual spectrum in D

(ignoring the noise) can be represented as:

~si ¼ Ai f
*

ðxj � xiÞ i ¼ 1; . . . ; n; j ¼ 1; . . . ;m; ð2Þ
where for the ith spectrum Ai is the peak amplitude

and xi = x0 + dxi is the frequency offset determined
as dxi shift from some average frequency position

x0. If it is assumed that D contains at least two dis-

tinct spectral shapes, i.e. at least two ~si having differ-

ent frequency shifts, based on the assumptions implicit

in Eq. (2), it follows that the remaining peak param-

eters, such as line width and phase are identical for

the spectra in D. Both A and dx are (n · 1) matrices,

containing the amplitudes Ai and frequency variations
dxi. A Taylor series expansion of the signal f

*

around

x0 yields:

D ¼ A f
*

þo f
*

ox

������ dxþ 1

2

o2 f
*

ox2

������ dx2 þ � � �

0
B@

1
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Assuming that the frequency variations are small, i.e.,

dx � dx2, the second and higher order members in

the Taylor series can be ignored. PCA in this case yields

two PCs, that describe D. It can be shown that for spec-

tral data, defined as in Eq. (2) the shape of P
*

2 is similar

to the shape of the derivative o f
*

ox

���
x0

. Indeed, because

the dominant variation in D is along the direction of

f
*

, then the first PC is also along this direction (by

definition). Because f
*

is a peak-shape, implying symme-

try around x0, then
o f
*

ox

���
x0

is orthogonal to f
*

. Since the

signals in D are presented in 2D space, both in the Tay-

lor series expansion, as well as in the PCA representa-

tion, it follows that P
*

2, orthogonal by definition to P
*

1,

is collinear to o f
*

ox

���
x0

, i.e., P
*

2 has a derivative shape.

Therefore, if frequency shifts exist in multi-spectral
data sets and if they are the dominant source of varia-

tion, then the second PC of this data set will show first

derivative line shapes. Spectral regions, containing the

derivatives can then be detected by their high correla-

tions with simulated first derivative shapes, generated

with different line widths. The goal is to identify spectral

shapes in P
*

2 that match the simulated derivatives, and

this will indicate presence of frequency shifts in the cor-
responding spectral regions.

A spectral region of interest (SROI) is defined as a

spectral sub-region of q points (the SROI may contain

several peaks or the entire spectral width) and PCA is

applied to this region. P2j is defined as the component

of P
*

2 at frequency j (in points), j = 1, . . . ,q. f (k � x0,s)
which describes a simulated peak-shape with center fre-

quency x0 and line width parameter s (both in points).
Without loss of generality, f (k � x0,s) can be assumed

to be of a Lorentzian functional form. Only the spectral

width of f containing points in a symmetrical interval of

a few (‘) line widths around x0 will be considered, i.e.,

k = x0 � ‘s, . . . ,x0 + ‘s, where ‘ is a small positive inte-

ger. of
ok is defined as the derivative of f, calculated in the

same interval. Typically, k is much smaller than the en-

tire spectral width q of the SROI. The process, which
follows, can be described as �sliding� the derivative
of
ok along P

*

2 and calculating the correlation coefficients

between of
ok and the underlying part of P

*

2 at each fre-

quency point. Formally, correlation coefficients are cal-

culated as follows:

Rp
s ¼ abs CORREL

of
ok

; P 2p

� �� �
;

p ¼ r; . . . ; r þ 2‘s; r ¼ 1; . . . ; q� 2‘s: ð4Þ

Thus, for a given line width s, a total of q � 2‘s corre-

lation coefficients are estimated. Furthermore, s can be

varied incrementally by ds over a range smin until smax,

that are considered to be the best guesses for minimal
and maximum line width, present in the data. Finally,
for magnetic resonance spectra, besides a single Lorentz-

ian line, f (k � x0,s) may have the functional from of 1:1

Lorentzian doublets and 1:2:1 Lorentzian triplets or

other higher multiplets in less common cases. The spec-

tral region with the highest correlation coefficient is iso-

lated and the peaks in this region are aligned
appropriately and then, the corrected spectral region is

amended in the data set.

The process continues until all spectral regions with

significant correlations between the simulated first deriv-

atives and P
*

2 are corrected. The entire procedure was

implemented in the IDL programming language (RSI,

Boulder, CO). The program can be obtained by request

from the authors. At present the input and output files
are written in binary format as IEEE floats. PCA is ap-

plied to the real part of the data set signals in the fre-

quency domain. For a typical data set such as NMR

spectra as used in the exemplification here, this implies

that a time-to-frequency domain processing has been

performed. Typically these steps consist of data filtering,

zero-filling, Fourier transformation and phasing. Also

the spectra are usually co-aligned, using a resonance
from an internal reference compound.

It can be assumed that amplitude and frequency

shifts are the major sources of variations in high-resolu-

tion 1H NMR spectral data, resulting in second and

higher order PCs, containing in parts some derivative

shapes. Three functional shapes of first derivatives of a

single Lorentzian line, 1:1 doublets and 1:2:1 triplets

were simulated since these comprise the major classes
of multiplets seen in 1H NMR spectra. This is not a lim-

itation, however, since more complex multiplets can eas-

ily be simulated and even complex second order

multiplets can be regarded as a superposition of singlets.

Table 1 summarizes the specific parameters for simula-

tion of these shapes, as well as the initial spectral widths

considered for each one of them. The correlation coeffi-

cients are estimated using Eq. (4) and among all the cor-
relations, the corresponding spectral regions with

highest correlation [k1,k2] are marked for further

processing.

The analyzed data set is split in two: one, containing

the SROI with the points between [k1,k2] zeroed and a

complementary one to which the correction procedure

is applied. The spectral data in [k1,k2] is aligned by shift-

ing the frequencies of the points with maximum ampli-
tude in each spectrum to a certain average frequency,

which typically is the middle of the spectral region.

Now, the aligned data is added to the spectral subset

with zeroed intensities between [k1,k2].

The entire procedure of calculation of R�s is repeated,
skipping the region of [k1,k2] in P

*

2. If there are correla-

tions higher than a certain value (our experience shows

that 0.80 is sufficient for indicating significant correla-
tion), then the procedure proceeds with extraction of

the corresponding spectral region and alignment. The



Table 1

Summary of parameters for simulating the derivative shapes and typical line widths limits and increments for each shape

Derivative type ‘a x0 smin (in Hz) smax (in Hz) ds (in Hz)

Single Lorentzian line 6 3s 1 10 1

1:1 Lorentzian doublet 9 3s, 6s 0.5 10 0.5

1:2:1 Lorentzian triplet 12 3s, 6s, 9s 0.1 5 0.1

a Number of line widths in the total number of points.
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process continues until all spectral regions with signifi-

cant correlations are corrected.
3. Results

The above procedure is illustrated on a data set com-

prising 57,600 MHz 1H NMR spectra of rat urine, being
a sub-set of the data acquired from a study on the

hydrazine toxicity as previously published [6]. In that

study, hydrazine (at three doses, 75, 90, and 120 mg/

kg) was administered orally to Han Wistar rats and ur-

ine samples were collected prior to the administration
Fig. 1. Typical 600 MHz 1H NMR spectrum from whole rat uri

Fig. 2. (A) The spectral region of interest (SROI) in 9 spectra from the hy
and at various time periods after dosing. In addition, ur-

ine from normal control rats was collected at the same

time-intervals [6].

The FIDs were line-broadened by 0.3 Hz, trans-

formed to the frequency domain, and phased. The reso-

nance of 3-trimethylsilyl-(2,2,3,3-2H4)-1-propionic acid

sodium salt (TSP) was used as a chemical shift reference

at 0 ppm. A typical spectrum from one of the control
rats is shown in Fig. 1. This global alignment, based

on TSP, however, is not sufficient for the complete

alignment of the rest of the peaks. As an example, two

spectral regions from 9 selected spectra are presented

in Fig. 2: the spectral region between 2.35 and
ne. The resonance at 0 ppm is the reference signal of TSP.

drazine data set. (B) The spectral region of TSP in the same spectra.



Fig. 3. The first three PCs and their corresponding normalized eigenvalues of (A) SROI, (B) before, and (C) after application of the procedure for

individual peak alignment to the doublet of the AB citrate resonance. (D) SROI after application of the procedure for the individual peak alignment.

The boxes around the derivative shapes in the second PC in (A) indicate the three spectral regions in which corrections were preformed, namely the

doublet of the AB citrate resonance, the triplet of 2-oxoglutarate and the singlet peak of succinate.
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2.60 ppm (Fig. 2A), which will be referred to later as the
SROI, and the TSP peak-region [�0.03 to 0.03 ppm]

(Fig. 2B). The SROI contains the following peaks: one

doublet from the AB type spectrum of citrate, a triplet

from 2-oxoglutarate and the singlet from succinate.

Whilst the shape of the TSP peak across these spectra

is almost identical (Fig. 2B), large frequency shifts in

both directions can be seen for the peaks in Fig. 2A.

PCA of the SROI also reveals substantial frequency
shifts in this region. The first three PCs from the SROI

are presented in Fig. 3A. The second PC is composed

entirely from derivative shapes and contributes �15%

to the total variance.

The procedure for the individual peak alignment

was applied to this region. The correlation (Eq. (4)) be-

tween the region of the AB doublet of citrate and a

doublet with line width of 6 Hz had the highest corre-
lation coefficient (0.96) and this region was selected for

alignment. PCA of the peak-region (Fig. 3B) shows

that 17% of the total variance is related to frequency

shifts. It should be noted that in �real� data one of

the peaks of the citrate ‘‘doublet’’ is consistently higher

then the other and so aligning the data by the higher

peak is successful. This is demonstrated in Fig. 3C,

where PCA of the adjusted for frequency shifts region
shows that the variance, associated with the second PC

is only 0.67%.The total amount of the adjusted shift

was 90 points (�10 Hz). The procedure for detecting

remaining frequency shifts was applied again, skipping

the region of the AB citrate in P
*

2. The correlation be-

tween the region of succinate and a single Lorentzian
derivative (line width = 4 Hz) had the highest correla-

tion (0.87). The data were aligned in this region and

lastly, the region of 2-oxoglutarate was strongly corre-

lated with a triplet derivative (line width = 2 Hz) and

the shifts in this region were corrected. The total

amount of adjusted shifts for these metabolites were

27 and 17 points, respectively.

The first three PCs of the SROI after the described
corrections are presented in Fig. 3D. The first PC now

explains 94% instead of 55% of the total variation in
the data set, indicating that about 40% of the variance
was related to the shifts of the three metabolites aligned.

The shape of the second PC dramatically changed—in-

stead of entirely comprised of derivative shapes it is

now related to variations in peak magnitudes. It con-

tains �negative� peaks from citrate, 2-oxoglutarate and

succinate and a positive triplet for 2-aminoadipic acid,

indicating that in the data set there are processes, related

to simultaneous decrease of the first three metabolites
and increase of the latter [6]. As a consequence, the

scores of the second PCs are now related primarily to

the dose- and time-related spectral changes, rather than

artifactual frequency shifts as in the case prior to appli-

cation of the alignment procedure.
4. Discussion

The proposed approach substantially improves the

data prior to application of PR techniques by removing

experimental variations that often can mask subtle, but

biochemically important, spectral changes. It is particu-

larly useful for high-resolution data because frequency

shifts are the dominant source of �unwanted� variations
in these spectra. On the one hand, these data are extre-
mely sensitive to small variation in pH, ion concentra-

tions, and/or temperature variations and these

variations affect the various NMR peaks differently.

On the other hand, variations, induced by other spectral

imperfections, such as line widths, phase distortions,

and baseline are minimal.

The detection of the spectral regions containing such

artifactual shifts is insensitive of the precise functional
line shape and width of the peaks—even in cases of a

less-than-perfect match between the simulated line

shapes and the regions of derivatives in the second PC,

the evaluated correlations are significant. Although the

peak-shapes, found in high-resolution 1H NMR data

are very close to Lorentzian lines, as used in this paper,

the sensitivity of the detection allows flexibility in how

well the synthetic shapes model the true data. It is only
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sufficient that the line widths of the simulated line shapes

approximate the real peak line widths.

The procedure is relatively fast (processing time is less

than 10 min on Digital Personal Workstation 600 a.u.

with 576 MB of RAM, running Digital Unix 4.0 D),

with most time being taken by estimation of the coeffi-
cients R (Eq. (4)). Although calculating these coefficients

at each correction step is redundant it proved to be a ro-

bust way for estimation. An alternative approach would

be to store all correlations, together with the corre-

sponding spectral region and once the correlations are

sorted, to execute the corrections in descending order.

Because of the high-sensitivity of the detection, as dis-

cussed above, numerous line widths and accompanying
spectral regions will show significant correlation with

the same section of the second PC. It proved impossible

after correcting the data in a given region to effectively

eliminate all other correlations, related to the same data.

Thus, eliminating this region for further consideration

and calculating new correlations, although computa-

tionally more intensive, proved to be more accurate

way to perform this part of the procedure.
Extracting the peak-regions for correction and rein-

serting the corrected data can introduce slight offsets

when connecting the edges of the peak-region with

the remaining of the data. However, these offsets are

typically small compared to the peak-amplitudes and

the added variation introduced into the data are negli-

gible. In addition, it should be noted that the correc-

tion procedure entirely preserves the area of the
peaks, given that the peaks are well separated and

there is no loss of the peak-area due to truncation of

the peak�s wings.

The procedure also assumes that the peaks (including

doublets and triplets) are well separated, that the shifts

among the peaks in a given region is a continuum of

small shifts, and that the baseline variation in the spec-

tral region are minimal. The procedure proposed here
has the advantage that it detects exclusively the peak-re-

gions where shifts occur and where the alignment proce-

dure will be successful while introducing minimal error.

Other methods rely on comparison with a reference

spectrum [13] and are thus dependent on the degree of

appropriateness of this spectrum. Variations in fre-

quency for strongly overlapping peaks do not result in

derivative shapes in the second PC and thus they are
naturally excluded from this analysis. Precise modeling

of the existing in the data multiplets (and subsequently

their derivatives) will improve the performance of the

procedure, both in terms of detection and correction

of the frequency shifts. The use of 1:1 doublets and

1:2:1 triplets was adequate for the type of NMR data

presented in this paper; alternatively, complex spin sys-

tems may be modeled using available Gamma simula-
tion toolkits [15]. Of course, if the single peaks in

multiplets are well separated the procedure will be suc-
cessful of correcting the existing frequency shifts. In

summary, the developed procedure increases the capa-

bility of PR to detect subtle, but biochemically impor-

tant, spectral changes, which are often masked by

experimental fluctuations. This is of particular impor-

tance as the loss of discrimination caused by spectral
artifacts affects in the first place the detection of changes

in the levels low and intermediate molecular weight

compounds, the key components of the biochemical net-

works. Second, the PC scores of the corrected data now

become coherent function of the experimental variables,

such as dose or time. Third, the identified patterns are a

collection of real peaks, rather than aggregates, which

allows their interpretation in biochemical terms. Lastly,
it is possible to combine and reanalyze data sets ac-

quired under a variety of conditions or even from differ-

ent techniques. The development and application of

these procedures facilitate the process of pattern identi-

fication and will be used to investigate metabonomic

changes due to disease processes. The approach de-

scribed here will be of special applicability when analyz-

ing large data bases of metabonomic data such as that
generated by the COMET consortium investigating

metabonomic approaches to drug toxicity testing [16].
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